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Abstract
We study the dynamics of a 180◦ domain wall of ab-type in external alternating magnetic and
electrical fields in magnetic materials with linear magnetoelectric interaction. We discuss the
features of oscillatory and drift motion of domain wall and stripe structure depending on the
parameters of external fields and characteristics of the material.

1. Introduction

The magnetic domains and domain walls (DW) stipulate the
nonuniformity of a magnetic material and therefore affect
its basic physical properties [1]. Thus, investigations of the
dynamical properties of magnetic nonuniformities are of great
interest now. The investigations of magnetic domain structure
(DS) and DW in multiferroics in electrical fields are now of
great interest also from the applied standpoint [2].

The motion of DW can be induced by a stationary [3] or
variable [4, 5] magnetic field, by sound [6], by laser beam [7],
etc. The influence of magnetic field on the dynamics of DW has
been studied most of all. The influence of the rest of the factors
(electrical field, etc) has been less frequently investigated.

The influence of a stationary electrical field on the density
of DW surface energy and the velocity of its motion in
Seignette magnetics were studied in [8]. In works [9, 10]
the effect of variable electrical field on the dynamics of DW
was investigated. In the case of the spin-reorientation first-
order phase transition of Morin’s type in rhombic Seignette
antiferromagnetics the magnetoelectric interaction excites
oscillations of 90◦ DW. The amplitude of oscillation velocity
of such DW is proportional to the electric field amplitude [8].
The drift of a 180◦ DW of ac-type [10] occurs in magnetics
with a linear magnetoelectric interaction under the influence of
external electric and magnetic fields. The drift velocity in this
case is proportional to the square of the amplitude of variable
fields.

The controlled DW displacement under the influence of a
stationary electrical field in garnet ferrite films was observed
experimentally in [11]. The direction of DW displacement

changes into the opposite one for the change of the polarity
of the electric field. The nonuniform magnetoelectric
effect was proposed as a mechanism for the observable
phenomenon. The experimental observations of dynamical
transformations of a magnetic stripe-domain structure in a
bilayer thin film ferromagnetic–Ni/ferroelectric–lead zirconate
titanate heterostructure in an electric field are presented in [12].

In the present paper we study analytically the nonlinear
dynamics of ab-type DW in a magnetic with linear
magnetoelectric interaction. As the subject of the investigation
we used a two-sublattice system of a weak ferromagnetic
(WFM) [8–10] which can describe the magnetic subsystem
of rhombic Seignette magnetics [13] (for example, Ni–Cl-
boracites or rare-earth manganites of crystalline class C2v).

2. The model and equations of motion

Let us write the Lagrange density function L(l) of a
two-sublattice weak ferromagnet in terms of the unit
antiferromagnetic vector l, l2 = 1 [2, 14]:

L(l) = M2
0

[
α

2c2
(l̇)2 − α

2
(∇l)2 −

(
β1

2
l2
z + β̃2

2
l2
y

)

+ 2d

δ
(hxlz − hzlx)

− wme(l) + 4

δgM0
(h · [l̇ × l]) − 2

δ
(l · h)2

]
, (1)

where l̇ denotes the derivative with respect to time;
M2

0 = (M2
1 + M2

2 )/2; M0 is the length of the sublattice
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magnetization vector; c = gM0

√
αδ/2 is the minimum spin-

wave phase velocity; δ and α are the homogeneous and
inhomogeneous exchange coupling constants, respectively; g
is the gyromagnetic ratio (equal for each sublattice); β1 and
β̃2 are the effective constants of rhombic anisotropy; β̃2 =
β2 + d2

δ
; d is the exchange-relativistic Dzyaloshinskii constant

(as shown in [15], a weak ferromagnetism occurs in the plane
perpendicular to the pyroelectric axis C2 which is considered
to be directed along the Y axis); wme(l) is the energy density
of the magnetoelectric interaction; h = H/M0; H =
H0 cos(ωt + χ) is the external alternating magnetic field with
frequency ω and phase shift χ .

Let us direct the external electric field E(t) = E0 cos(ωt)
along the pyroelectric axis. As Ey is transformed by the
identical representation of pyroelectric class C2v, we have for
wme(l) the same form as for the energy density of magnetic
anisotropy but with other phenomenological constants:

wme(l) = Ey(t)

(
b1

2
l2
z + b2

2
l2
y

)
, (2)

where b1 and b2 are the constants of the magnetoelectric
interaction.

The dynamic stopping of the DW, due to dissipative
processes, will be taken into account by using the dissipative
function

F = λM0

2g
l̇2, (3)

where λ is the dimensionless Gilbert damping constant.
Since the components of the vector l are connected by the

relation l2 = 1, it is convenient to rewrite the Lagrange density
function (1) in terms of two independent angle variables θ and
ϕ which parametrize the unit vector l:

lx + ilz = sin θ exp(iϕ), ly = cos θ. (4)

Taking into account the parametrization from equation (4),
we obtain from the Lagrange density function (1) the equations
of motion for the angle variables θ and ϕ:

α

(
	θ − 1

c2
θ̈

)
+ sin θ cos θ

[
α

(
1

c2
(ϕ̇)2 − (∇ϕ)2

)

+ (β̃2 + b2 Ey) − (β1 + b1 Ey) sin2 ϕ

]

+ 2d

δ
(hx sin ϕ − hz cos ϕ) cos θ

− 4

δ
((hx cos ϕ + hz sin ϕ) sin θ + hy cos θ)

× (hx cos θ cos ϕ − hy sin θ + hz cos θ sin ϕ)

+ 4

δgM0
[ḣx sin ϕ − ḣz cos ϕ + hy ϕ̇ sin 2θ

+ 2ϕ̇ sin2 θ(hz sin ϕ + hx cos ϕ)] = λ

gM0
θ̇ , (5)

α∇(sin2 θ(∇ϕ)) − α

c2

d

dt
(ϕ̇ sin2 θ)

− (β1 + b1 Ey) sin2 θ sin ϕ cos ϕ

− 4

δ
[(hx cos ϕ + hz sin ϕ) sin θ + hy cos θ ]

× (hz cos ϕ − hx sin ϕ) sin θ

+ 2d

δ
(hx cos ϕ + hz sin ϕ) sin θ

+ 4

δgM0
[(ḣx cos ϕ + ḣz sin ϕ) sin θ cos θ − ḣ y sin2 θ

− hy θ̇ sin 2θ − 2θ̇ sin2 θ(hz sin ϕ + hx cos ϕ)]
= λ

gM0
ϕ̇ sin2 θ. (6)

If β1, β̃2 > 0, then in the absence of external fields in the
homogeneous ground state the vector l is collinear to the x axis
(a axis of the crystal). In this case it can be easily seen that the
equations of motion have two particular classes of nontrivial
solutions describing two types of 180◦ DW which can exist
in the magnet under consideration [2, 14]. The first class of
solutions describes the case when the vector l rotates in the X Z
plane (ac-type DW) and the second one describes the rotation
of the vector l in the XY plane (ab-type DW).

In the case of β1 > β̃2 > 0 the DW of the ab-type is
stable. This DW corresponds to ϕ = ϕ0 = 0, and the angle
variable θ = θ0(y) satisfies the equation

αθ ′′
0 + β̃2 sin θ0 cos θ0 = 0 (7)

and boundary conditions θ0(±∞) = ±π/2. We consider
the distribution of magnetization to be nonuniform along the
Y axis (the prime denotes differentiation with respect to this
coordinate).

The solution of equation (7) that describes the static 180◦
DW has the following form:

θ ′
0 = − R

y0
cos θ0(y) = − Rρ

y0
sec h

(
y

y0

)
,

sin θ0(y) = −R tanh

(
y

y0

)
,

(8)

where y0 =
√

α/β̃2 is the DW thickness, R is the topological
DW charge and ρ is the parameter that describes the direction
of rotation of the vector l in the DW.

As is known, the neighbouring 180◦ DW separating the
domains with the opposite magnetization axis direction in a
stripe-domain structure (SDS) possess the opposite topological
charges R = ±1. These charges are determined by the
boundary conditions of equation (7).

In turn, the rotation of the vector l in various DW can
be about either a positive or a negative direction of the Y
axis. This direction of rotation is determined by the parameter
ρ = ±1. Therefore, the neighbouring DW of ab-type in the
SDS correspond to

lx(y → ±∞) = ∓R, ly(y = 0) = ρ.

The isolated static DW is described by the relations (8) with
R = −1 and ρ = +1.

3. The solution of equations of motion

For the description of nonlinear macroscopic DW dynamics we
use one of the perturbation theory versions for solitons [4–6].
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We introduce a collective variable Y (t) which has the meaning
of the coordinate of the DW centre at the instant of time
t , the derivative of which defines the instantaneous velocity
of DW V (t) = Ẏ (t). The DW drift velocity is defined
as the instantaneous DW velocity V (t) averaged over the
oscillation period Vdr = V̄ (t) (the bar denotes averaging over
the external field oscillation period). Assuming the amplitude
of the external electric Ey and magnetic h fields to be small,
we represent the functions θ(y, t), ϕ(y, t) and V (t) by series
in powers of the field amplitude:

θ(y, t) = θ0(ξ) + θ1(ξ, t) + θ2(ξ, t) + · · · ,
ϕ(y, t) = ϕ1(ξ, t) + ϕ2(ξ, t) + · · · ,

V = V1(t) + V2(t) + · · · ,
(9)

where ξ = y − Y (t); subscripts n = 1, 2, . . . denote the
order of smallness of the quantity to the field amplitude θn ,
ϕn, Vn ∼ hn, En

y . The function θ0(ξ) describes the motion of
an undistorted DW (the structure of θ0(ξ) is the same as that of
θ0(y) in the static solution (8)). The functions of higher orders
θn(ξ, t) and ϕn(ξ, t), n = 1, 2, . . . describe the distortions of
the DW shape and the excitation of spin waves.

We substitute the expansions (9) in equations (5) and (6)
and separate terms of different orders of smallness. Obviously,
in the zero approximation we obtain equation (7) which
describes a DW of ab-type at rest.

The perturbation theory first-order equations can be
written in the form

(L̂ + T̂ )θ1(ξ, t) = b2

β̃2

Ey sin θ0 cos θ0 − 4

β̃2δgM0

ḣz

− cos θ0(ξ)

y0ω
2
1

(
R(V̇1 + ωr V1) + (gM0)

2

2
y0hzd

)
, (10)

(L̂ + σ + T̂ )μ1(ξ, t) = 2d

β̃2δ
hx

+ 4

β̃2δgM0

[ḣx cos θ0(ξ) − ḣ y sin θ0(ξ)], (11)

where we denote

μ1(ξ, t) = ϕ1(ξ, t) sin θ0(ξ), T̂ = 1

ω2
1

∂2

∂ t2
+ ωr

ω2
1

∂

∂ t
,

σ = (β1 − β̃2)/β̃2,

ω1 = c/y0 = gM0

√
β̃2δ/2 is the activation frequency of the

lower spin-wave mode and ωr = λδgM0/4 is the characteristic
relaxation frequency.

The operator L̂ has the form of a Schrödinger operator
with a non-reflecting potential:

L̂ = −y2
0

d2

dξ 2
+ 1 − 2

ch2(ξ/y0)
.

The spectrum and the eigenfunctions of L̂ are well known. It
has one discrete level with eigenvalue λ0 = 0 corresponding to
a localized wavefunction

f0(ξ) = 1√
2y0ch(ξ/y0)

and also a continuous spectrum λp = 1 + p2y2
0 corresponding

to the eigenfunctions

f p(ξ) = 1

bp

√
L

(
tanh

ξ

y0
− ipy0

)
exp(ipξ),

where bp =
√

1 + p2 y2
0 and L is the crystal length.

We seek the solution of the system of equations of the first
approximation (10) and (11) as an expansion over a complete
orthonormalized set of the eigenfunctions { f0(ξ), fk(ξ)}:

θ1(ξ, t) = Re

{∑
p

[c(1)
p f p(ξ) + c(1)

0 f0(ξ)] exp[i(ky − ωt)]
}
,

ϕ1(ξ, t) = Re

{∑
p

[d(1)
p f p(ξ) + d(1)

0 f0(ξ)] exp[i(ky − ωt)]
}
.

For a monochromatic external magnetic field of frequency
ω, with all three components different from zero, we obtain
from equations (10) and (11)

θ1(ξ, t) = a1(t)G1(ξ) + a2(t)G2(ξ),

μ1(ξ, t) = a3(t) cos θ0(ξ) + a4(t) sin θ0(ξ)

+ a5(t)G3(ξ).

(12)

Here we introduce the following notations:

a1(t) = − Rρb2

4β̃2

Ey, a2(t) = − 2

β̃2gM0δ
ḣz,

a3(t) = ρπdgM0hx + 4ḣx

β̃2gM0δ[σ − q1 + iq2]
,

a4(t) = −4ḣ y

β̃2gM0δ[1 + σ − q1 + iq2]
, a5(t) = dhx

β̃2δ
,

G1(ξ) = y0

∫ +∞

−∞
cos(pξ) tanh(ξ/y0) + (py0) sin(pξ)

ch(πpy0/2)

× dp

�1(p, ω)
,

G2(ξ) = y0

∫ +∞

−∞
sin(pξ) tanh(ξ/y0) − (py0) cos(pξ)

sh(πpy0/2)

× dp

λp�1(p, ω)
,

G3(ξ) = y0

∫ +∞

−∞
sin(pξ) tanh(ξ/y0) − (py0) cos(pξ)

sh(πpy0/2)

× dp

�2(p, ω)
,

where
q1 = (ω/ω1)

2, q2 = (ωωr/ω
2
1),

�1(p, ω) = λp − q1 + iq2,

�2(p, ω) = λp(λp + σ − q1 + iq2).

On the basis of the requirement of the vanishing of the
Goldstone mode amplitude (d (1)

0 = 0) [16], we come to the
equation for the definition of DW velocity:

V̇1 + ωr V1 = − Ry0gM0

2
(πρḣz + dgM0hz). (13)

3
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The solution of this equation describes the DW
oscillations in an external oscillating field and has the form

Y (t) = Re

[
Ry0gM0

2

idgM0 − πρω

ω(ωr + iω)
h0z exp[i(ωt + χz)]

]
.

(14)
Let us separate the real part in the expression (14). Then we
can rewrite the solution in the following form:

Y (t) = A cos(ωt + χ0), (15)

where A = y0gM0h0z

2ω

√
(dgM0)

2+(πω)2

ω2+ω2
r

is the DW oscillation

amplitude and χ0 is the initial phase shift.
The DW drift motion is a second-order effect relative to

the field amplitude. Consequently, the DW drift velocity is
defined from the equation of the second order of perturbation
theory:

(L̂ + T̂ )θ2(ξ, t) = − R cos θ0

y0ω
2
1

(V̇2 + ωr V2)

+ θ ′
1

ω2
1

(V̇1 + ωr V1) + 2V1

ω2
1

θ̇ ′
1

+ 2d

β̃2δ
(ϕ1hx cos θ0 + θ1hz sin θ0)

+ cos 2θ0

β̃2

(
b2 Eyθ1 − 4

δ
hx hy

)

+ 4

β̃2δgM0

(ϕ1ḣx + 2ϕ̇1hx sin2 θ0)

+ sin 2θ0

2

[
V 2

1

c2
− 4

β̃2δ
(h2

x − h2
y) − (σ + 1)ϕ2

1 + (ϕ̇1)
2

ω2
1

− y2
0 (ϕ

′
1)

2 − 2θ2
1 + 8

β̃2δgM0

hy ϕ̇1

]
, (16)

where a prime denotes the differentiation with respect to
variable ξ .

The second equation of the system, which follows from
equation (6) and defines the function ϕ2(ξ, t), has a similar
structure, but does not contain a second-order term in the
expansion of the DW velocity (V2) and will therefore be of no
interest. Since we are interested only in forced motion of DW,
then for the determination of the velocity V2(t) it is enough to
find the coefficient d (2)

0 , corresponding to the Goldstone mode
in the expansion of θ2(ξ, t) by its own eigenfunctions of the
operator L̂, and to equate it to zero. Substituting the functions
θ1(ξ, t) and ϕ1(ξ, t) (12) into equation (16), averaging it over
the oscillation period and integrating, we come to the following
expression for the drift velocity Vdr = V̄2:

Vdr = ν0 R[ρ A1(ω; χ) + D1(ω; χ)]H0x H0y

+ ν̃0 R[ρ A2(ω; χz) + D2(ω; χz)]H0z E0y. (17)

Here we introduce the notations:

A1(ω; χ) = π

4

q1q2

Q1
[q2 cos χ − (B1 B2 + q2

2 ) sin χ],

D1(ω; χ) =
√

d2

β̃2δ

√
q1

2Q1
[q2(η1(B2

2 + q2
2 ) + η2 B2) cos χ

− (B1 B2
2 + q2

2 (B1 − η2)) sin χ],

A2(ω; χz) = ω

4gQ2
[q2(ω

2
1η2 + ω2η3) cos χz

− (ω2
r η4 + ω2η3(1 + q1)) sin χz],

D2(ω; χz) = π

16

d M0ωr

Q2
[ωr cos χz + ω(1 − q1) sin χz],

Q1 = [B1 B2 + q2
2 ]2 + q2

2 , B1 = 1 + σ − q1, B2 = σ − q1,

Q2 = [(1 − q1)
2 + q2

2 ](ω2 + ω2
r ),

ν̃0 = b2

β̃2
ν0, ν0 = g2 y0

ωr
are the motilities of the DW; χ = χx −χy

is the comparative phase displacement; η1 ≈ −0.5, η2 ≈ 2.5,
η3 ≈ 0.1, η4 = 2.6 are the numerical parameters.

It should be noted that A1(ω; χ) and D1(ω; χ) are
dimensionless quantities, and A2(ω; χz) and D2(ω; χz) have
the units Oe.

4. Discussions

Firstly, let us discuss certain features of solutions (12) and (14)
of the first-order equations (10) and (11).

The eigenfunctions of the operator L̂ were obtained by
Winter [17] in the problem on spin excitations of magnetics.
In 180◦ DW spins can participate in oscillations of two types.
The first type of oscillation is related directly with DW. These
oscillations are referred to as the intra-wall oscillations and
correspond to the localized wavefunction f0(ξ). The second
type of oscillation is the analogue of common spin waves inside
domains. These oscillations correspond to the continuous
spectrum which is described by the wavefunctions f p(ξ).

It follows from the relations (12) and (14) that all
components of an external magnetic field and the electric field
component Ey excite the second type of oscillations, while
the component hy excites only the state with p = 0. The
components hx and hz also excite the oscillations of the first
type. There is another situation in DW of ac-type: all the
components of a magnetic field participate in the intra-wall
oscillations; the field components hx , hz and Ey excite the state
of the continuous spectrum with p = 0, and the component hy

excites all the intra-domain oscillations.
The features of oscillatory motion of DW are the

consequence of the fact that the electric field in the linear
approximation does not cause the motion of the ab-type DW.
The DW of ac-type [10] behaves similarly, while a variable
electric field (as was mentioned above) excites oscillations of
90◦ DW near the spin-reorientation phase transition [9].

From the relation (15) it is easy to find the velocity of
the oscillatory motion of DW: V = ωA. The obtained result
is accurate for the mobility of DW for an oscillatory regime
of motion in a magnetic field [18]. The comparison of the
amplitude A of DW oscillations with the experimental data
results in a good agreement: as for the frequencies of the
experiment, we have dgM0 � ωr � ω; then the dependence
of the amplitude on frequency is equal to A ∼ 1/ω, which is
observed experimentally [19].

Let us discuss now the features of drift motion of DW.
The analysis of equation (17) shows that the DW drift velocity
is defined by terms of two types. The terms of the first
type D1(ω; χ) and D2(ω; χz) are due to a Dzyaloshinskii

4
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Figure 1. Dependences of A1(ω;χ) on frequency of the external
field at χ = 0 (a), χ = π/4 (b) and χ = π/2 (c).

interaction, and the second type terms A1(ω; χ) and A2(ω; χz)

are present also in a pure antiferromagnet. For an estimation
of the contributions of these terms to the drift velocity of DW
for different values of the frequency and phase shifts, we will
use the characteristic values of the parameters of Seignette
magnetics [13]: d ∼ 102, σ = 2, y0 = 5 × 10−6 cm,
M0 = 200 Oe, g = 1.76 × 107 s−1 Oe−1, ωr ∼ 109 s−1,
ω1 ∼ 1011 s−1, and b2

β̃2
∼ 10−4. Then the mobility of DW is

equal to ν0 ≈ 1.55 cm s−1 (ν̃0, accordingly, is four orders less).
Let us analyse the dynamics of DW in the example of the

term A1(ω; χ) which determines the most typical features of
DW drift velocity. The dependence A1(ω; χ) on the frequency
of an external magnetic field is presented in figure 1 for
different values of phase shifts {χ = 0, χ = π/4, χ = π/2} in
the field H0x = H0y = 1 Oe.

Table 1. Dependence of the drift velocity of DW (due to the term
D1(ω; χ)) on resonance frequencies and polarization at
H0x = H0y = 1 Oe.

ω

Vdr(ω;χ) cm s−1 ω1
√

σ ω1

√
σ + 1

Vdr(ω; 0) ±1.4 −232.0
Vdr(ω; π

2 ) 1.6 ∓40.4
Vdr(ω; π

4 ) 1.5 −166.8 4.9

Two typical resonances on the frequencies ω = ω1
√

σ

and ω = ω1
√

σ + 1 take place in the case χ = 0. Thus
A1(ω1

√
σ ; 0) ≈ 1.6 and A1(ω1

√
σ + 1; 0) ≈ 2.4 which

provides the absolute values 2.4 and 3.7 cm s−1 of DW drift
velocity, accordingly.

In the case χ = π/4 the resonance–antiresonance
behaviour of the function A1(ω; π/4) holds, but becomes
asymmetrical. The resonances in those regions of the
dependence which took place at χ = 0 (the area of positive
values of the function A1) remain pronounced. The width
of the resonance–antiresonance region in this case is equal to
	ω ≈ 1, 4 × 109. The function A1(ω; π

4 ) possesses the values

A1

(
ω1

√
σ ; π

4

)
≈

{
−0, 2

1, 3
,

A1

(
ω1

√
σ + 1; π

4

)
≈

{
2

−0, 4.

The maximum value of the drift velocity (3.1 cm s−1) in this
case is achieved at the frequency ω1

√
σ + 1.

In the case χ = π/2 the peculiarities of the type
‘resonance–antiresonance’ arise at the same frequencies, and
A1(ω1

√
σ ; π/2) ≈ ∓0.8 and A1(ω1

√
σ + 1; π/2) ≈

±1.2. The absolute values of drift velocity 1.2 and
1.8 cm s−1 correspond to these values, accordingly. Near
these frequencies the DW changes the direction of motion
into the opposite one. The transition between the resonance
and antiresonance behaviours occurs in a narrow region of
frequencies which is of the same order for both peculiarities
and is equal to 	ω ≈ 109 s−1.

The obtained results of the contribution of the term
A1(ω; χ) into the drift velocity were obtained at H0i = 1 Oe.
However the criterion of smallness of the amplitude in the
perturbation theory holds and for H0i = 10 Oe: h0i =
H0i/M0 = 0.05 � 1. In the field H0i = 10 Oe the values
of DW drift velocity turn out to be two orders higher.

The results of the analysis of other terms, D1(ω; χ),
A2(ω; χz) and D2(ω; χz), are presented in tables 1 and 2. For
those cells in the table, in which one number is indicated, there
is a simple resonance of the corresponding frequency. If two
numbers are indicated, the resonance–antiresonance character
of the dependence is observed. The signs ‘±’ before the values
denote that the dependence is symmetric and the resonance
starts from the positive value of the velocity, and then the
antiresonance (the negative value) follows. Two different
values in a cell indicate the asymmetrical character of the
resonance–antiresonance dependence.
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Table 2. Dependence of the drift velocity of DW (due to the terms
A2(ω;χz) and D2(ω;χz)) on resonance frequency and polarization
at H0z = 10 Oe, E0y = 0.1 CGSE units.

Vdr(ω; χ) cm s−1 A2(ω1;χz) D2(ω1;χz)

Vdr(ω1; 0) 56.5 0.6
Vdr(ω1; π

2 ) −438.9 ±0.3
Vdr(ω1; π

4 ) −270.4 0.5 −0.1

In the limiting case of small frequencies (ω � ωr ) the
drift velocity of DW for H0z = 10 Oe and E0y = 0.1 CGSE
units is equal to

Vdr = ν̃0 R

[
π

16
d M0 cos χz

]
H0z E0y

∣∣∣∣
χz=0

≈ 0.6 cm s−1.

In this frequency range the contributions of other field
components are negligible.

It follows from the presented results that, in the presence
of a purely magnetic field in the XY plane, the maximum
effect of drift is caused by Dzyaloshinskii interaction. The term
D1(ω; χ) takes its maximum value on the resonant frequency
ω1

√
σ + 1 for χ = 0. The maximum contribution to the drift

velocity due to H0z E0y is provided by the term A2(ω; χz). At
the resonance frequency ω = ω1 for the values H0z = 10 Oe,
E0y = 0.1 CGSE units and χ = π/2, the drift velocity can
reach the value of 4 m c−1.

The character of the dependence of drift velocity (17)
on DW topological charge R and parameter ρ indicates the
possibility of the drift of a stripe-domain structure (DS) formed
by 180◦ DW. As the topological charges R in adjacent DW are
different, the drift of DS caused by the terms D1,2(ω, χ) in
a weak ferromagnet is impossible. Nevertheless it is possible
in a pure antiferromagnet. For the drift of a stripe DS it is
also necessary that the parameters ρ in adjacent DW are to be
different, i.e. the orientations of the vector l in adjacent DW
are to be opposite, but to have the same directions of rotation.
In this case the factor Rρ for adjacent DW has the same signs,
and the DW move in one and the same direction, i.e. the motion
of DS takes place.

The similar effect, namely the drift of a stripe DS in
crossed electric and magnetic alternating fields, was predicted
in [10].

5. Conclusions

We investigated the nonlinear dynamics of DW of ab-type
in magnetic materials with linear magnetoelectric interaction
in external alternating fields. It is established that, against
the background of DW fast oscillations, a slow component of
translatory (drift) motion of DW arises. The drift motion of
DW can be caused either by the crossed alternating magnetic
field polarized in the XY plane or by the crossed electric

E0y and magnetic H0z fields. The drift velocity is formed
by terms of two types: the terms of the first type are due
to Dzyaloshinskii interaction, and the other type terms have
an antiferromagnetic origin. The first type terms provide a
maximum contribution for the drift in a magnetic field and the
second type terms in crossed electric and magnetic fields.

The possibility of the drift of DS is predicted. The drift of
a stripe DS is possible in a magnet with pure antiferromagnetic
character of ordering under certain coordination of signs of the
topological charge R and parameter ρ describing the turn of
the vector of antiferromagnetism in DW.
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